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ABSTRACT  
We investigate fundamental ideas and philosophies behind the optimization of radar measurements for 
completion of desired tasks. In contrast to traditional approaches, where waveforms are design for “good” 
ambiguity functions, search areas are uniformly illuminated, and radar operations are executed in a pre-defined 
manner, cognitive radar admits the possibility of adapting its illumination characteristics in real time in order to 
achieve tasks with fewer resources such as power, spectrum use, and timeline. However, using a radar in this 
way requires techniques for representing features or events of interest, and objective functions for optimizing the 
parameters of the illumination. In this paper, we take a high-level view of radar measurement optimization for 
different applications with the goal of encouraging the reader to consider radar measurement in a more flexible, 
less restrictive, manner.  

1.0 INTRODUCTION 

Traditional radar systems, and sensors in general, are typically designed to capture a one-for-one mapping of the 
observed scene. In other words, sensors are designed to obtained high-fidelity, unambiguous mappings of range, 
Doppler, angle, wavelength, or whichever parameters a particular sensor can measure. The sensor response is 
typically designed to be an approximately shift-invariant pixel function that captures localized resolution cells 
over a region of interest; hence, there must be at least one measurement per resolution cell. The highest fidelity 
representation is obtained when the pixel-like imaging function has narrow width (i.e., high resolution for 
minimal blurring) and low sidelobes (i.e., reduced leakage across resolution cells). Consequently, this approach 
leads to increasing requirements for high resolution and low sidelobes, as quantified by sensing metrics such as 
the radar ambiguity function, array patterns, optical point spread functions, or similar imaging function. 

This traditional approach to sensor design and development takes a capture-everything approach. If a one-to-one, 
high-fidelity mapping of the entire observed parameter space can be obtained, then in some sense, the data set is 
complete and various exploitations tasks can be pursued. These exploitation tasks are critical, as sensor data is 
rarely taken simply for the sake of collecting data, but rather for the purpose of some goal such as detection, 
characterization, and/or parameter estimation. However, much of the collected data is non-informative for a 
given exploitation task or set of tasks, which means that sensing resources were expended to collect data that are 
not useful to the task(s) at hand. In many cases, available prior knowledge could have been used to predict that 
certain parts of the data would be non-informative, but cannot be acted on because the sensor is designed to 
operate in a rigid, prescribed fashion to collect complete representations, regardless of whether prior knowledge 
indicates a waste of resources. We suggest here that such rigid sensing paradigms do not adequately treat sensing 
resources such as size, weight, power (SWAP), and cost as finite and in short supply. 
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An alternative approach to sensor design and operation is to consider whether the information in a set of 
measurements can be increased, thereby making more efficient use of finite sensing resources. In this paradigm, 
the actual measurements collected by the sensor should be informed by the intended exploitation tasks, as well as 
available prior information (including information obtained from other recent measurements). The sensor 
operation may even become adaptive, because past measurements will inform current and future measurements 
in order to improve their utility. When we develop representations for tasks of interests, noise, interference, and 
parameters that aren’t of interest, then these representations can be updated as measurements are received and 
can be used to optimize the parameters and structure of future measurements. In this paper, we refer to such 
closed-loop, adaptive sensing as cognitive sensing (and as cognitive radar when these concepts are specifically 
applied to radar). In some cases the data obtained by a cognitive radar are non-traditional, such that there is an 
increase in computational complexity needed to achieve an exploitation tasks. However, trends in improved 
computing capability suggest that the added costs of computation may, at least in the long run, be small 
compared to the benefits of reduced SWAP in the sensing hardware. 

In this paper, we explore concepts of adaptive sensing and sensing resource allocation through canonical, 
textbook-type inference problems. We consider an information-based model for representing exploitation tasks 
and nuisance parameters, and use the standard inference problems to show how the information-based model can 
lead to interesting conclusions regarding sensing resource efficiency and use. We consider signal detection, 
detection with a nuisance parameter, detection of multiple signals, and continuous parameter estimation. We also 
describe some of the challenges in optimizing multiple simultaneous tasks through a joint detection and range 
estimation example. The goal of this paper is that the reader will begin to think more broadly with respect to how 
sensors are designed and operated, with hopefully a desire to work toward more flexible, agile, and efficient 
radar systems in the future. 

2.0 VIRTUAL SOURCE MODEL FOR INFERENCE TASKS 

The idea of a virtual source model was first presented in [1]. The authors in [1] recognized that the Shannon 
mutual information (MI) [2] inherent in a sensing task is not the same as the information needed to reconstruct 
an entire data set. In particular, they considered an optical imaging problem, and noted that despite the 
uncertainty associated with all the pixels in an image, the maximum entropy associated with a target detection 
problem is only 1 bit; hence, for a detection task there is a maximum of 1 bit of information that can be obtained 
through the sensing process. Of course, this bit cannot be observed directly, and many measurements may need 
to be made to deal with nuisance parameters such as unknown target location. But despite all the measurements 
to be made, the ultimate decision simplifies to the answer of a binary yes/no question with a worse-case prior 
uncertainty of 1 bit. 

The virtual source model can be explained using Figure 1. In any inference problem, there is a truth about the 
sensing environment that we wish to know – for example, detection of a target or a parameter (e.g., range) of a 
signal of interest. This truth is generated from a random source according to a pdf that is consistent to the task 
and represents the distribution of truth values that would be observed over many trials of the inference task. 
Defining a realization of this source variable as Θ, then the source variable has either a probability mass function 
for discrete decision tasks or a probability density function (pdf) for a continuous parameter estimation problem.  
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Figure 1: Virtual source model for Bayesian representation of a sensing inference problem. 

For now, we denote this distribution as ( )p Θ  for both types (discrete versus continuous) of tasks. We cannot 
observe a particular realization of Θ directly, but instead we observe a signal that is an encoding of Θ as 
manifested in a physical quantity. For example, if Θ is a range value to be estimated, then we observe a signal 
that is delayed according to the physical propagation time. The observed signal can also be modified by various 
nuisance parameters; for example, the signal might have a Doppler shift in addition to its range delay. If the 
exploitation task is to estimate the target range, then Doppler shift is a nuisance parameter that effects the 
observed signal and makes the desired inference problem more difficult. In another example, Θ could represent a 
binary detection task, but if the target is present, then nuisance parameters might be unknown range and Doppler 
shift. We define the distribution of observed physical signals incident on the sensor and conditioned on the true 
source parameter as ( )|p S Θ . The observed physical signals S are usually corrupted by noise, such that the 
noisy signal Z is the one that is conditioned and sampled by the sensing hardware. We define the obtained 
measurements as R, such that the information gained through the sensing process, with respect to the task that is 
encoded in the sensing variable Θ, is ( );I R Θ .  

3.0 INFERENCE TASK AND MEASUREMENT OPTIMIZATION EXAMPLES 

3.1 Detection of a Known Signal 
The simplest detection problem is the detection of a known signal in noise. We begin with this simple problem to 
demonstrate the virtual source model and the relationships between probability of detection, probability of miss, 
and information gained. 

For a detection problem, we let the virtual source variable be a binary random variable taking on the values 0 or 
1. If the target is absent, then Θ = 0. If the target is present, then Θ = 1. Therefore, we can express the physical 
signal incident on the sensor as 

 ( ) ( ) ( )z t s t n t= Θ + ,  (1) 

such that the signal to be measured consists of only noise if the target is absent or a known signal plus noise if 
the target is present. We assume that the noise is additive white Gaussian noise (AWGN), and because the signal 
is known, the detection problem can be reduced to the calculation of a scalar-valued sufficient statistic obtained 
by correlating ( )z t  with ( )s t∗  [3]. For radar, we usually implement Neyman-Pearson detection, whereby the 
sufficient statistic is compared to a threshold that provides a pre-defined probability of false alarm [3]. Here, we 
take a Bayesian approach, which we acknowledge is non-standard for radar detection problems and requires 
knowledge of the prior probabilities of target presence. In this example, we assume that both hypotheses are 
equally likely, yielding a maximum information of 1 bit. 
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Figure 2 shows probability of detection and probability of miss for detection of a known signal in noise with the 
Bayesian approach. The different curves correspond to different detection thresholds applied to the posterior 
probability of target presence. For example, the prior probability of target presence is 0.5. This probability is 
updated using Bayes’ theorem and the received measurement to obtain a posterior probability, which is 
compared to a threshold. Obviously, the higher the threshold, the lower the probability of detection. Figure 3 
shows the MI gained as a function of SNR for the same detection problem. If the posterior probability of target 
presence is ( ){ }1 Pr 1|P z t= Θ = , then the MI computed on a given simulation trial is 

 ( ) ( )( )1 2 1 1 2 11 log 1 log 1MI P P P P= − − − − −    .  (2) 

  

Figure 2: Probability of detection (left) and probability of miss (right) for a detection problem. 

 

Figure 3: Information gained versus SNR for detection of a known signal in noise. 

The MI result shows that there is diminished benefit, from an information perspective, in increasing SNR above 
approximately 15 dB. The probability of miss result shows that the probability of miss is decreasing (when 
shown in log scale) with SNR above 15 dB, so of course there is benefit to higher SNR. But Figure 3 enables 
one to consider whether the additional resources necessary to increase SNR above 15 dB should instead be 
allocated to accomplishing another task. Although higher SNR is always better, these resources must come from 
a finite resource budget – for example, the additional SNR might be achieved by integrating additional pulses. 
Figure 3 begs the question whether, at some point, these pulses should instead be allocated to detecting a 
different target (e.g., in a different area). 
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Another interesting point that emerges from consideration of this straightforward detection problem is whether 
the information gained from a single measurement can be carried forward to the next measurement. Most radar 
detection processors operate in a single shot paradigm, meaning that a test statistic is compared to a detection 
threshold. If the statistic exceeds the threshold, then a detection is declared. If not, then the statistic is thrown 
away and the procedure is repeated from scratch on future measurements. However, Figure 4 shows that in many 
cases, the probability of target presence has moved in the correct direction. Although it hasn’t moved enough to 
declare a detection with confidence, there is still information that has been gained and shouldn’t be discarded. 
Figure 4 shows distributions (obtained via histograms of simulation trial results) of the MI gained and the 
posterior target present probability. In generating these figures, we only used the target-present trials of the 
simulation, such that the ideal posterior probability of target presence is 1 1P =  , and the ideal information gained 
is 1 bit. First, we consider the left pair of figures, which corresponds to an SNR of 0 dB (i.e., they are a deeper 
look into the 0 dB results from Figures 2 and 3). These figures show that for many of the trials, the measurement 
obtained was not strong enough to move the target probability away from the prior probability of 0.5. When the 
probability doesn’t change appreciably, this is essentially zero information gained, and we see from the far left 
plot that the most likely result of the measurements was to obtain little or no information. However, there is also 
a non-trivial number of times that the probability moved to the region around a target probability of 0.7 or 0.8. If 
the detection threshold is approximately 0.8 or 0.9, then this information should be retained and additional 
sensing resources could be allocated toward achieving an accurate decision. For the pair of figures on the right, 
the SNR is 5 dB, and we see that the results are further biased toward target presence. More information is 
gained more often, and we have many more trials indicating a possible target. 

          

Figure 4: Distributions of information gained and posterior target present probability  
for a binary detection problem with SNR of 0 dB (left) and 5 dB (right). 

These results shown in Figure 4 indicate the usefulness in taking the information gained from one set of 
measurements, and carrying it over to future measurements. In the case of cognitive radar, we wish to not only 
carry this information forward, but also to use this information in allocating sensing resources optimally for best 
sensing performance and efficiency. 

3.2 Detection of a Signal with a Nuisance Parameter 
A more interesting and practical problem involves detection of a signal that is parameterized by an unknown 
nuisance parameter. Examples of this type of detection problem include detection of a target with unknown 
range, detection of a target with unknown Doppler shift, and detection of a target in an unknown location. 
Despite the particular form that this problem may take, it is still a binary detection problem, and if the target’s 
prior probability of being present is 0.5, then there is still only 1 bit of information to be acquired. The presence 
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of one or more nuisance parameters certainly makes the detection problem more difficult, but they don’t change 
the fundamental amount of information inherent in making a decision of target presence or absence.  

Typical methods for dealing with nuisance parameters are the generalized likelihood ratio test (GLRT), and the 
Bayesian approach [3]. The type of approach depends on whether a pdf for the nuisance parameter is available. 
If no pdf is available, then the parameter can be treated as a deterministic unknown, for which the GLRT 
approach involves finding the maximum likelihood estimate of the unknown parameter followed by substitution 
into the likelihood ratio test. If a pdf is available, then the likelihood ratio test can be performed with the 
parameter’s pdf incorporated into the distributions for the likelihood ratio test. For example, random phase can 
usually be assumed to follow a uniform pdf, and this pdf factors into the signal distributions in the signal-present 
and signal-absent hypotheses. 

For our current analysis, we consider the case where we are trying to detect a target signal that could have one of 
N possible values of a nuisance parameter. Although nuisance parameters are usually continuous, using N 
discrete values of the nuisance parameter helps us to demonstrate the detection problem from the perspective of 
resource allocation. Hence, the target signal has a 50/50 chance of being present, and if it is present, then it is 
equally likely to have one of N possible parameter values. This detection problem can be expressed in our virtual 
source model according to  

 iE N= Θ +r s n   (3) 

where r is a length-N vector of detection statistics calculated for the N different parameter values, Θ is once 
again the binary random variable indicating target presence or absence, si is an indicator vector with all zeroes 
except for a single ‘1’ in the location corresponding to the true value of the nuisance parameter (if signal is 
present), E  is used to control the SNR of the scenario, and n is a vector of AWGN. The statistics in the 
elements of r can be used to compute conditional probabilities of target presence for the different nuisance 
parameter values. For example, let A1…AN be the N different nuisance parameter values with prior probabilities 
of Pr{A1}, Pr{A2}, … Pr{AN}. It is then possible to compute the conditional probabilities of target presence (i.e., 
hypothesis H1), which are Pr{H1|A1} through Pr{H1|AN}, followed by the total probability of target presence 
according to 

 { } { } { } { } { } { } { }1 1 1 1 1 2 2 1Pr H Pr H | Pr Pr H | Pr Pr H | PrN NA A A A A A= + +2 .  (4) 

Figure 5 shows mutual information (with a maximum of 1 bit) for this detection problem as a function of SNR 
for different measurement mechanisms. First, the solid blue line shows results for a single measurement defined 
according to (3) where each of the N nuisance parameter values is illuminated with the same intensity. Here, 

E is the total energy budget, such that each cell is illuminated with 1/Nth the total energy, and a single 
measurement is defined as a single capture of the length-N vector r. For generating Figure 5, we set N = 15. A 
common rule of thumb is that SNR needs to reach approximately 10-12 dB to achieve somewhat reliable 
detection performance. In this example, because the energy is distributed evenly over 15 different nuisance 
parameters, the performance does not significantly improve until the SNR reaches 20-25 dB.  
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Figure 5: Mutual information for a detection problem with nuisance parameters. 

However, as described in the previous section, in many cases the measurement is valuable for moving the 
probability of target presence in the correct direction, just not enough to make a reliable decision. Therefore, it 
would be helpful to carry over this information to a subsequent measurement, rather than make a decision based 
on unreliable data. For the current problem, this carryover could be achieved using Bayes’ theorem to update the 
overall probability of target presence, as well as the probability of individual nuisance parameters, with each 
measurement received. Defining rq as the measurement obtained on the qth iteration of the carryover 
measurement scheme, then the probability of target presence after collecting rq is 

 ( ){ } ( ){ } ( ) { }1
1 1 1

1
Pr H | Pr H | ,H Pr

N
q q

q q i i
i

p−

=

∝ ∑r r s s .  (5) 

In this way, data obtained can be carried over from one illumination to the next, thereby increasing effective 
SNR and improving performance. This strategy, which has the same general motivation as track-before-
detection methods [4-5], leads to the performance seen in the red curve of Figure 5. Obviously, this carryover 
has improved the detection performance; but it is strictly a result of additional energy added to the problem. The 
number of measurement iterations before making a decision was Q = 8, and the performance curve has shifted to 
the left by 10log10(8) = 9 dB. On the other hand, if a single measurement is taken, but that single measurement 
has 8× more energy allocated to it, then the performance is the same (blue dashed curve in Figure 5).  

Finally, we consider what happens when we carry over information between measurements, but in a scenario 
that allows the different nuisance parameters to be non-uniformly illuminated. This capability obviously depends 
on the particular scenario – for example, it is usually not possible to change the illuminated energy from one 
range bin to the next. But if the nuisance parameter values indicated different locations in an illuminated scene, it 
might be possible to control energy allocation through the illumination pattern. In this case, we make a simple 
calculation according to 

 
{ } { }( )

2

Pr 1 Pr
n

i i

σ
−σσ

  (6) 

where 2
nσ  is the noise power in a single element of the detection statistic vector r. When the probability of the 

ith nuisance parameter value being true is 0.5, this is a situation of maximum uncertainty, and the metric in (6) 
has a minimum value. On the other hand, when the probability of the ith nuisance parameter value being true is 
either 0.0 or 1.0, then this is a situation without any uncertainty, and the metric goes to infinity. We compute this 
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metric for each of the N nuisance parameter values at each measurement iteration, and allocate energy according 
to a waterfilling solution on the metric. That is, cells with the lowest metric receive the strongest energy 
allocations because they are the most uncertain. Parameter values without any uncertainty do not need any 
energy allocation.  

We can see in Figure 5 that this adaptive energy allocation provides another significant boost in performance. 
The first boost is obtained by the carryover of information. The second boost is obtained by allocating energy to 
those regions of the detection problem that have the most uncertainty, and phasing out illumination for those 
cells that have already been determined. While these concepts are being applied here to a fairly basic detection 
problem, the same principles apply to our additional work in adaptive beamsteering for target search and track 
functions, adaptive waveform parameter selection integrated with track-before-detect operation, and other novel 
radar applications of adaptive measurement. 

Another method to compare the performance of the adaptive energy allocation, is to determine the average 
number of measurement iterations necessary to achieve a certain performance. For example, we have set a 
detection threshold at a probability of target presence equal to 0.98, and run many trials with a target present (but 
randomly located at different nuisance parameter values). We built statistics on the number of measurement 
iterations required to declare a detection, as a function of SNR and for equal energy allocation versus adaptive 
energy allocation. In Figure 6a (left), we show the distribution of iterations for an SNR of approximately 5 dB. 
The adaptive energy allocation (in red) clearly has a much higher incidence of needing fewer iterations to make a 
decision. Figure 6b shows the average number of iterations required as a function of SNR. At the lower end of 
SNR, adaptive allocation has a major benefit. 

   

Figure 6: Statistics on number of measurement iterations to make a detection decision  
for adaptive energy allocation (red) and equal energy allocation (blue).  

3.3 Detection of Multiple Targets with Nuisance Parameters 
The previous scenarios involved a single target, if present. On the other hand, many radar applications require 
detection of multiple targets having different parameters such as range, Doppler shift, and/or location. In this 
section, we expand the previous concepts to detection of multiple targets, but where there exists some prior 
information on the number of targets in the scene.  

We consider the previous example where there are N possible values of a nuisance parameter, but there may now 
be multiple targets that have different nuisance parameter values. The significant problem here is that keeping 
track of the potential scenario hypotheses becomes computationally cumbersome. For illustration purposes, 
consider a simplified scenario with N = 5 nuisance parameter values. If no targets are present, then there are no 
targets having any of the nuisance parameter values. If one target is present, then it could have the first nuisance 
parameter value, or the second, or the third, and so on. Figure 7 depicts the nature of the problem by explicitly 
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listing out the different combinations that might be true for different number of targets. To continue along the 
theme of the previous section, we need to track the probability of being true for each of these possible states. 
One can imagine how this might become overwhelming for large state spaces and large numbers of targets, but 
in many cases the maximum number of targets can be reasonable. 

 
Figure 7: Depiction of different nuisance parameter combinations that  

can result from different number of targets present in the scene. 

In Section 3.2 where we assumed a maximum of a single target, this knowledge causes the hypotheses in 
different nuisance parameter cells to be correlated. For example, if a single target is likely to have a particular 
nuisance parameter value, then that necessarily means that other nuisance parameter values are less likely. Such 
knowledge allows resources to be focused on areas of highest uncertainty, while the information gained impacts 
the entire target parameter space. The same is true here in the current scenario, but the amount of correlation 
depends on the size of the target parameter space and the number of targets. In the limit as the number of targets 
is allowed to fill the entire parameter space, then gaining information about target presence in one cell has no 
impact on other cells, and resources (such as illuminated energy) cannot be focused so effectively.  

Figure 8 demonstrates the possible behavior when the maximum number of targets is small compared to the 
resolvable target parameter space. In this example, there are six resolvable target parameter values, and the 
maximum number of targets in the scene is three. The prior probabilities on the number of targets are: 

 Pr{0 Targets} = 0.51; Pr{1 Target} = 0.38; Pr{2 Targets} = 0.1; Pr{3 Targets} = 0.01. 
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Figure 8: Probability of detection for 6 nuisance parameter cells and maximum of 3 targets. 

For each trial in the simulation, the true number of targets is generated according to these probabilities. Once the 
number of targets is obtained, their parameter values are randomly generated as well. Each measurement 
comprises a detection statistic in each of the six resolvable cells, from which the probability of target presence in 
each cell and the expected number of targets present can be updated. Energy is allocated to these cells in a 
similar manner as before according to the probability of target presence in each cell at each measurement 
iteration. Once again, we observe the same themes – carryover of information provides a large performance 
improvement and adaptive energy allocation provides additional significant benefit. The mutual information 
curve (not shown) also follows the same trend as before. 

4.0 MIXED TASKS 

Section 3 demonstrates the potential benefit of assigning finite resources such as energy and timeline to achieve 
detection tasks. When there is uncertainty regarding certain parameters of the target, it may be possible to 
enhance performance by customizing illumination parameters to help clarify the most uncertain aspects of a 
given detection problem. However, the previous examples deal exclusively with a detection problem, which for 
a single detection decision has a maximum entropy of 1 bit. In other applications, it is often desirable to not only 
detect a target, but also to provide an estimate of its parameters; therefore, the parameter estimation problem 
should also be included as part of the sensing task.  

Parameter estimation involves estimating a continuous parameter, which is a fundamentally different type of 
problem than detecting the correct hypothesis out of a finite set of alternatives. The differential entropy of 
continuous random variables is distinct from the entropy of discrete random variables [2]. The units of entropy 
are different, and different entropy values can be obtained depending on the units used for the parameter being 
estimated (i.e., metres versus kilometres). These factors make it difficult to define optimization criteria for mixed 
tasks such as detection and estimation. In terms of estimating multiple parameters having different units (e.g., 
metres for range and Hertz for Doppler), one might normalize the units in terms of fundamental resolution cells. 
But for performing both detection and estimation operations, these heterogeneous quantities cause some 
difficulty in combining to obtain an objective metric.  

Further complicating the situation is that the best measurement setup for detection may not be the best setup for 
estimation. We consider here, for example, the mixed tasks of detection and range estimation, and we 
demonstrate that the optimum waveforms may be different for the two tasks. To perform a demonstration, we 
synthesized an extended target by randomly generating scatterers over a 12-meter extent. Once these scatterers 
were generated, we then assumed that the resulting target impulse response (the sum of reflections at the 
different delays, amplitudes, and phases) was fixed and known. The coherent interactions of the scatterers varies 
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with frequency and can be destructive, constructive, or somewhere in between. Figure 9 shows the (complex 
baseband) frequency-selective target behaviour that results from such a multi-scattering object. We then 
modelled a scenario where this target might or might not be present, but if it was present, it had a random range 
to the front of the target that varied uniformly from 0 to 15 meters. We considered two waveforms having a 
duration of 0.16 μs. The first was a pure sinusoid matched in frequency [6] to the peak target response (at 
approximately 390 MHz in Figure 9). The second was a 100-MHz waveform centered at 0 MHz (in complex 
baseband spectrum). Figure 10 shows the SNR achieved at the output of the optimum filter for both waveforms 
as a function of the input signal energy. As expected, output SNR grows with input signal energy, but we also 
see that the matched sinusoid provides an SNR gain of about 7 dB compared to the 100-MHz waveform. 

 

Figure 9: Frequency selective target RCS versus frequency. 

 

Figure 10: Input/Output SNR relationship for a frequency-selective target and two different waveforms. 

Because SNR is critical for detection, we see in the left panel of Figure 11 that the matched sinusoid waveform 
provides better detection performance (reduced probability of miss). In the high-SNR asymptotic region, the two 
curves have a relative shift of approximately 7 dB, which corresponds to the difference in SNR obtained by 
matching the sinusoidal waveform to the peak frequency response of the target. However, the right panel of 
Figure 11 shows the mean-squared error in the range estimation (obtained through Monte Carlo simulation) for 
detected targets. Below about 10 dB SNR, the range estimate is unreliable, but above this threshold SNR the 
performance of the 100-MHz waveform improves dramatically compared to the narrowband tone waveform. Of 
course this behaviour is due to the fact that range estimation is intimately related to range resolution, which 
depends directly on bandwidth. In fact, the Cramer-Rao Bound [7] for range resolution improves linearly with 
SNR, but quadratically with bandwidth. Therefore, we must conclude that the matched narrowband waveform is 
best for detection, while the waveform with wider bandwidth is best for range estimation. Consequently, it is 
impossible to optimize a waveform for both, and some trade-off or compromise will be necessary. 
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Figure 11: (Left) Probability of miss and (Right) Range MSE  
for extended target and two different waveforms. 

5.0 COMMENTS ON POSSIBLE APPLICATIONS 

While more details on applications of the above concepts are provided in our second paper for this lecture series 
(titled “Cognitive Radar Networks and Integrated Radar Modes” [8]), here we give a few brief comments 
regarding some potential applications of the resource allocation philosophy demonstrated above through 
fundamental detection and estimation problems. 

The basic principles outlined above have been applied to problems of waveform design for target recognition, 
adaptive parameter selection for radar search-and-track modes, and integration of adaptive parameter selection 
with track-before-detect methods. For the target recognition application, the fundamental task is to identify the 
target type or class, which is encoded with a discrete random source variable. This task is typically made more 
complicated by nuisance parameters such as target orientation. In past work, we have divided nuisance 
parameters such as orientation and target range into small local regions, assigned a probability of the target 
parameters being within this region, and modelled the signals conditioned on each nuisance parameter region as 
Gaussian. The prior probabilities for each nuisance parameter region might be obtained, for example, from 
previous track information. Once these probabilistic models are defined from target template libraries and priors 
on the nuisance parameters, we can design a waveform that enhances discrimination between the different target 
types. With each transmission and measurement, the nuisance parameter probabilities and individual target type 
probabilities can be updated, such that a new optimized waveform can be designed for the next transmission. 
With such a method, we have shown improved performance for a fixed number of transmissions, or reduced 
number of transmissions to achieve a fixed performance goal [9]. These conclusions are similar to those made in 
Section 3.2.  

For the search-and-track application, we have modelled the target parameter space as a grid of resolution cells, 
each with a probability of target presence. These probabilities are updated with each illumination, or allowed to 
regress back to a steady state value when not illuminated for several iterations. By tracking probabilities from 
illumination to illumination, we can adaptively select waveform pulse repetition intervals [10] and/or 
beamsteering locations [11] in order to improve the chances of detecting weak targets moving through a scene. 
To balance between target detection and tracking (mixed tasks), we use a scale factor to linearly combine 
detection-related entropy with parameter estimation-related entropy. By allowing non-illuminated cells to 
converge back to a quiescent state, we introduce dynamics into the scene. These various features can be 
combined to weight the relative importance of the detection and tracking tasks, to assign target-specific 
importance via variable weight factors, and to apply terrain-specific dynamics that model the likelihood of 
targets appearing or disappearing in different areas in the scene. For example, we can code the dynamics of the 
scene such that known roads and open areas are searched more frequently than mountainous or shadowed 
regions. Many beneficial implementations are possible, but at the admitted expense of additional computation to 
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keep track of the many different permutations of the possible radar environment and to quickly compute 
optimum illumination parameters. In addition to the grid of probability cells, we have also used a multi-target 
track-before-detect approach in [10]. 

Again, more details are given in [9], along with our conclusions regarding potential benefits and pitfalls of 
different implementations. 

6.0 CONCLUSIONS 

The purpose of this paper was to demonstrate through textbook-type examples how adaptive and optimized 
allocation of sensing resources can improve sensor performance. These resources, such as power and timeline, 
are always constrained in any sensor system. It is possible to achieve more efficient allocation of these resources, 
but to do so requires task-specific performance metrics and sensing models parameterized by the variables of 
interest. In the case of multiple tasks, especially tasks of heterogeneous type such as detection and estimation, 
the sensor optimization for the different tasks might conflict. In such cases, a compromise is necessary. It may 
even be the case that measurements optimized for one tasks may be completely useless for another; therefore, 
there is a natural trade-off between enhanced performance through specifically optimized measurements and the 
robustness of general-purpose measurements.  

There are many potential applications and benefits, but each case requires a representation of what is known, 
unknown, and the desired tasks. Hopefully, this paper encourages the reader to consider a radar system’s 
ultimate exploitation tasks, and to consider whether existing and/or future radar systems can be used in more 
flexible ways to perform these tasks more effectively. 
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